
On Detection of Erratic Arguments

Jin Han, Qiang Yan, Robert H. Deng, and Debin Gao

Singapore Management University, Singapore
{jin.han.2007,qiang.yan.2008,robertdeng,dbgao}@smu.edu.sg

Abstract. Due to the erratic nature, the value of a function argument
in one normal program execution could become illegal in another nor-
mal execution context. Attacks utilizing such erratic arguments are able
to evade detections as fine-grained context information is unavailable in
many existing detection schemes. In order to obtain such fine-grained
context information, a precise model on the internal program states has
to be built, which is impractical especially monitoring a closed source
program alone. In this paper, we propose an intrusion detection scheme
which builds on two diverse programs providing semantically-close func-
tionality. Our model learns underlying semantic correlation of the ar-
gument values in these programs, and consequently gains more accu-
rate context information compared to existing schemes. Through exper-
iments, we show that such context information is effective in detecting
attacks which manipulate erratic arguments with comparable false pos-
itive rates.

Key words: Intrusion detection, system call argument, diversity

1 Introduction

Host-based anomaly detection techniques based on behaviors of programs in
terms of system call sequences were first proposed by Forrest et al. [8], and
improved and extended by a number of research work [7, 9, 13, 14, 19, 23].
The normal-behavior models of the applications are learnt from the behaviors
observed during a training phase; while during detection, any deviations from the
established models are interpreted as attacks to the programs monitored. Later
research [2, 17, 20, 24] further enhanced the behavioral model by capturing the
information of system call arguments.

Early schemes [17, 20, 24] model the argument behavior at the granularity
of different system calls, i.e., each system call (e.g., open, read, write) is as-
signed with a profile. The granularity is then improved by differentiating the
instances of the same system call when their call stacks are different [2]. For
example, the legitimate arguments of open@callstack1 and open@callstack2
are assigned with different profiles so that they can be tested differently in the
detection phase. However, since other context information is not captured dur-
ing the training, an adversary is able to evade the detection of these existing
schemes. Consider the following example code which assumes to contain a buffer
overflow vulnerability:

2 Jin Han et al.

int uid = geteuid();

char buf[128];

char* filename;

...

if (uid == 0)

filename = "/www/admin/configure.ini";

else

filename = "/www/user/configure.ini";

int fd = open(filename, O_RDWR);

write(fd, buf, sizeof(buf));

As illustrated in the example code, the system call open accepts two different
parameter values in the training phase, both of which correspond to the same
call stack. According to the existing schemes [2, 17, 24], both of these strings
will be treated as legitimate values during detection. Thus, an attack which
overflows buf and changes uid to 0 will be able to get the administrator privilege
while evading detection. Such a situation is more common in modern software
applications where code modules are extensively reused. Call stack is not able
to tell a difference in the privilege in different executions.

The fundamental difficulty in detecting such attacks stems from the erratic
property of function arguments. More formally, all legitimate values observed in
different normal program executions are not necessarily legitimate at a particular
execution. In a particular execution context, only a subset of the values (possibly
one) is legitimate while others could potentially be malicious.

This problem seems deceptively simple. The fine-grained context information,
which is required to differentiate the legitimate values at run-time, is difficult to
gather when training merely one program [2, 17, 24], especially when the source
code is not provided. Even for schemes which utilize two diverse applications,
their model cannot be simply extended to detect such attacks. For example,
hidden Markov models used in [10, 11, 12] (to train the normal-behavior profiles
of the system call sequences) are only able to handle finite states, while the space
of argument values is usually infinite.

In this paper, we propose an intrusion detection scheme which builds on two
diverse programs providing semantically-close functionalities. Our model learns
the underlying semantic correlation of the argument values in these programs to
detect attacks manipulating erratic arguments, which are recognized as normal
inputs by existing schemes. Specifically, we make the following contributions:

– We provide a formal approach of detecting attacks utilizing erratic arguments,
by learning relations of the function arguments between programs providing
semantically-close functionalities.

– We utilize taint analysis to further refine the detection model, which eliminates
the coincident relations to decrease the false positive rates.

– We implement a prototype of our scheme and present a detailed experimen-
tal evaluation. The evaluation demonstrates that a number of real attacks
which are hard to detect by existing schemes can be effectively detected us-
ing our technique. Specifically, it is shown that our detection model not only

Detecting Erratic Arguments 3

detects sophisticated attacks on security-critical data, but also detects some
Denial-of-Service attacks which are not addressed by existing techniques, with
comparable false alarm rates.

2 Diversity Detection Model

In this section, we first introduce the framework of our detection approach, which
is followed by the definitions of the argument relations. Different algorithms are
then provided to train the behavioral model for different types of arguments.

2.1 Overview

Figure 1 illustrates the basic idea of how our intrusion detection system (IDS) is
constructed. We regard two diverse software having semantically-close function-
alities if they provide same services. Examples of such diverse software could be
web servers like Apache and Lighttpd, or office software like Adobe PDF Reader
and Foxit PDF Reader. Similar to existing diversity-based intrusion detection
techniques, the framework in Figure 1 utilizes two diverse software providing
semantically-close functionalities to build the behavioral model, base on the
observations that these software cannot be successfully exploited by the same
attack [15].

IDS

Application 1

Application 2

System call sequences
with parameters

Syst
em c

all se
quen

ces

with
para

mete
rs

s
a
m
e
in
p
u
t

(p
o
te
n
ti
a
lly
m
a
lic
io
u
s
)

Fig. 1. Our diversity IDS framework

In this paper, we focus on building a normal-behavior model by extracting
the function arguments of both applications. Since these applications provide
semantically-close functionalities, there are semantic relations between the be-
haviors of these applications when they process the same input. Such seman-
tic relations will exhibit as the relations between the related function
calls and their argument values. For example, two web servers processing
the same HTTP request need to access the same local file on the disk. Thus,
consequently, there should be functions in both applications whose argument

4 Jin Han et al.

values contain the same file name. In the following, we will briefly introduce how
our model captures the argument relations between the two diverse applications.
Once the argument relations are trained, they will be utilized to detect attacks
that attempt to fool traditional IDS with erratic function arguments.

In the model of Figure 1, the same inputs, which are assumed to be free of
attacks in the training phase, are passed to both of these applications (app1,
app2). In order to process the input, each of these applications will invoke a
series of system calls (for each input):

S1 = 〈s1,1, s1,2, ..., s1,l1〉 S2 = 〈s2,1, s2,2, ..., s2,l2〉 (1)

Each system call si,j has a vector of arguments. In the training phase, all
information for each si,j will be recorded by corresponding monitor module of
appi, and is used to extract the information of the arguments. Specifically, in our
model, each argument is identified by:

argi,x where i ∈ {1, 2},
x = 〈index, type, s name, callstack〉.

In the above representation, i in argi,x indicates this argument appears in the
trace of appi. index is the position of this argument in the corresponding system
call, whose name is s name; type is the type of the argument (e.g. string or inte-
ger); callstack stores the call stack information of the corresponding invocation
of this particular system call.

In the training phase, we first obtain a pair of system call traces (S1, S2) for
each input. With all pairs of the system call traces, we then get a set of argument
pairs. For each argument pair (arg1,p, arg2,q), arg1,p is an argument in app1, which
is identified by a unique set of 〈index, type, s name, callstack〉 appearing in the
training set, and arg2,q is defined similarly. From the training data, we collect
a set of value pairs Valuep,q for each argument pair, where Valuep,q = {(v1, v2)|
arg1,p = v1, arg2,q = v2}. According to Valuep,q, we then produce a database of
relations R = {〈arg1,p R arg2,q〉}. This relation set R is finally utilized to detect
whether there is any violation for each pair of parameter values. If the relation
of a pair of parameter instances (〈arg1,p = vx〉 and 〈arg2,q = vy〉) does not satisfy
the corresponding 〈arg1,p R arg2,q〉 in R, the IDS will raise an alarm.

2.2 Relationships of the Arguments

In our model, we focus on two most common types of system call arguments
– string and integer, the definitions of which follow the standard definition in
programming language: a string is a sequence of zero or more characters followed
by a NULL (“\0”) character; while an integer is a numeric variable holding whole
numbers.

We define binary relation R that captures the relationship between two sys-
tem call arguments in the diverse applications. The relation between two argu-
ments is expressed as 〈arg1 R arg2〉, where arg1 is a particular argument in the

Detecting Erratic Arguments 5

first application, and arg2 is a particular argument in the second application.
Different sets of candidate relations are given to string and integer since these
two argument types have different characteristics.

We provide the following basic relations for string arguments:

• equal captures equality relation of the given two arguments, e.g., the file name
passed to an open system call in app1 could be the same as the file name passed
to another open (or stat64) system call in app2.

• samePrefix(n) indicates that the two string arguments have the same prefix,
the length of which is at least n. For example, if arg1 = "/home/usr/xyz" and
arg2 = "/home/usr/abc", then 〈arg1 samePrefix(10) arg2〉 holds.

• sameSuffix(n) indicates that the two string arguments have the same suffix
substring with length at least n.

• contain means that the second argument is a substring of the first argument.

• partOf is the reverse of contain relation, in which the first argument is a
substring of the second argument.

Note that for the same pair of arguments, more than one of the above re-
lations may hold. For example, if arg1 = "/home/configure.ini" and arg2 =
"/home/conf.ini", then both 〈arg1 samePrefix(10) arg2〉 and 〈arg1 sameSuffix(4)
arg2〉 hold. The above five relations defined are sufficient to cover the binary re-
lations of string arguments proposed in existing approaches, which are defined
for modeling the binary relations of arguments in a single program, such as
isWithinDir, hasSameDirAs, hasSameExtensionAs [2].

For integer arguments, we use a polynomial equation to represent the relation
of the two arguments. That is, let x = arg1 and y = arg2 (or x = arg2 and y =
arg1), the following equation holds:

y = cmxm + cm−1x
m−1 + ... + c1x + c0 (2)

For example, for the two malloc calls which create a memory region to store
the uri string parsed from the same request, the parameter values of these two
malloc could have the form y = 1 ·x+ c0. The value of c0 may not be 0 because
the internal structures which store the uri are different in these two programs.
Note that in Equation (2), when c1 = 1 and ∀i 6= 1, ci = 0, then arg1 = arg2.
In our model, this equal relation between numeric arguments is able to capture
most relations of flag arguments (such as O_RDONLY and O_RDWR), because they
usually appear as the same in the diverse software providing semantically-close
functionalities.

Polynomial relation does not cover all the binary relations between two inte-
ger arguments, e.g., exponential relation or bitwise relation may also exist under
some circumstances. In our current model, we only preserve polynomial relation
for integer parameters as it is the most common relation we observed in real
applications.

6 Jin Han et al.

2.3 Training Algorithms

The training procedure can be generally divided into three stages: argument pair
extraction, relation acquisition and relation refinement.

Argument pair extraction In this first stage, our purpose is to extract a set
of Valuep,q for each pair of 〈arg1,p, arg2,q〉. Each Valuep,q set will contain all the
value pairs occurred in the whole training procedure. All the sets of Valuep,q

will then be used to train the relation R between 〈arg1,p, arg2,q〉. The algorithm
of extracting each pair of arguments and its corresponding values are given in
Algorithm 1, after which a set PV= {(arg1,p, arg2,q,Valuep,q)} will be collected.
This PV set will then be used as input in Algorithm 2 and Algorithm 3.

Algorithm 1 Argument-pair extraction
1: for each (S1, S2) pair in the training set do
2: for each s1,j in S1 and each s2,k in S2 do
3: if comparable(s1,j , s2,k) then
4: for each arg1,p belonging to s1,j , and each arg2,q belonging to s2,k do
5: v1 = value of arg1,p

6: v2 = value of arg2,q

7: if (arg1,p.type = arg2,q.type) then
8: if (arg1,p, arg2,q, Valuep,q) already exists in PV then
9: add (v1, v2) to Valuep,q if (v1, v2) 6∈ Valuep,q

10: else
11: Valuep,q = {(v1, v2)}
12: add (arg1,p, arg2,q, Valuep,q) to PV
13: end if
14: end if
15: end for
16: end if
17: end for
18: end for

This step is critical to the rest of the training procedure. The amount of
all the combinations of 〈arg1,p, arg2,q〉 could be huge, however, we only consider
argument pairs which appear in comparable function calls (as shown in line
3 of Algorithm 1). We define comparable function calls as those who have the
same function names or whose functionalities are semantically related. For ex-
ample, system calls open and stat64 are comparable, and library calls malloc,
calloc and realloc are comparable. System calls like setuid and open are not
comparable since their functionalities are not semantically related. Our current
implementation of Algorithm 1 reads in a configuration file that specifies which
function calls are comparable. This configuration file is carefully constructed
according to the platform on which the target applications are running. Our
current implementation only considers the Linux operating system with GNU C
library.

Detecting Erratic Arguments 7

Relation acquisition The next step is to learn the relations between each
pair of arguments gained by Algorithm 1. Here we introduce two algorithms for
learning the relations: Algorithm 2 is used to learn the relations between two
string arguments; while Algorithm 3 is for integer arguments. We use ∅ to denote
that there is no relation between two arguments (arg1 ∅ arg2).

Algorithm 2 String-relation learning
Require: set PV.
1: for each (arg1,p, arg2,q, Valuep,q) in PV do
2: if arg1,p.type = arg2,q.type = string then
3: for each (v1, v2) in Valuep,q do
4: calculate R ∈{equal, samePrefix(n), sameSuffix(n), contain, partOf, ∅}, which

satisfies v1 R v2.
5: if R 6= ∅ then
6: for each Rc that 〈arg1,p, Rc, arg2,q〉 ∈ R do
7: if R conflicts with Rc then
8: remove all 〈arg1,p, Rc, arg2,q〉 in R
9: add 〈arg1,p, ∅, arg2,q〉 to R

10: else
11: add 〈arg1,p, R, arg2,q〉 to R
12: end if
13: end for
14: else if 〈arg1,p, ∅, arg2,q〉 6∈ R then
15: add 〈arg1,p, ∅, arg2,q〉 to R
16: end if
17: end for
18: end if
19: end for

Note that there is an update procedure in the learning process of Algo-
rithm 2 for the relation of samePrefix(n) and sameSuffix(n), which is not shown in
the algorithm. Take samePrefix(n) for example, suppose the existing relation for
arg1, arg2 in R is samePrefix(nold) and the new learnt relation is samePrefix(nnew).
The new relation of arg1, arg2 in R will be updated as samePrefix(min(nold, nnew)).

Another important detail not shown in Algorithm 2 is that, a threshold N
can be set for the relations samePrefix(n) and sameSuffix(n), to reduce the false
positives caused by small n. During learning, if the calculated n < N , then set
R = ∅. And different N should be assigned for samePrefix(n) and sameSuffix(n).
Also note that a set of confliction rules for the relations is needed in Algorithm 2
(at line 7). Generally, ∅ conflicts with other relations, and equal, contain, partOf
conflict with each other since the equal relation will always be verified first.

In Algorithm 3, the given order m should be at least 2, and should not be too
large so as to avoid the overfitting problem. m can also be dynamically adjusted
according to the size of each Valuep,q. However, the value of m should be at most
Valuep,q.size− 1 in order to have enough value pairs for solving the equation set
and leave at least one value pair to verify the results.

8 Jin Han et al.

Algorithm 3 Integer-relation learning
Require: set PV, order m.
1: for each (arg1,p, arg2,q, Valuep,q) in PV do
2: if arg1,p.type = arg2,q.type = integer then
3: if Valuep,q.size < m then
4: add 〈arg1,p, ∅, arg2,q〉 to R
5: else
6: use the first m pairs of (v1, v2) in Valuep,q to solve the equation set of

Equation (2) to get (cm, ..., c0), for both (x = arg1,p, y = arg2,q) and (x =
arg2,q, y = arg1,p).

7: if the equation set is solvable then
8: R = {x, y, (cm, ..., c0)}
9: for each (v1, v2) left in Valuep,q do

10: if Equation (2) does not hold then
11: R = ∅
12: end if
13: end for
14: add 〈arg1,p, R, arg2,q〉 to R
15: else
16: add 〈arg1,p, ∅, arg2,q〉 to R
17: end if
18: end if
19: end if
20: end for

The whole learning process is optimized by utilizing the ∅ relations. The PV
set does not need to be fully computed before running Algorithm 2 and Algo-
rithm 3. If 〈arg1,p ∅ arg2,q〉 already appears in R, then the remaining instances of
〈arg1,p, arg2,q〉 do not need to be added into PV. The ∅ relations will be dropped
at the end of the training.

2.4 Model Refinement

In this subsection, we include an additional training phase to refine the relations
we have obtained by the above algorithms. The relations R gained by using
previous algorithms are patterns on the values we observed. However, certain
trained relations may be due to the coincidence in the training data set, which
could cause false alarms in detection. Thus, it will be better if we can remove
those trained patterns in R which are not caused by the semantic relations
between the two diverse applications.

However, it is not an easy task to validate the semantic relations of arguments
and refine the trained model. Even with the source code, it is difficult for a
human to capture the exact semantic meaning of a given function in a complex
application. Thus, to automatically capture the semantic meanings of functions
without the source code is an even harder problem. One way of learning the
semantic relations between arguments is to use taint analysis [22]. Since the

Detecting Erratic Arguments 9

semantics of different set of function calls vary a lot, the detailed method of
carrying out taint analysis needs to be customized accordingly. It is difficult to
design a universal solution to perform the taint analysis for all the function calls.

In our current work, we develop a method of mapping memory management
library calls (such as malloc, free, realloc, etc.) of two diverse web servers,
according to the semantics gained by taint analysis. The basic idea is as fol-
lows: First of all, by tainting the request stream sent from client, we gain the
knowledge that which portions of the request are mapped to which heap memory
regions. Since these memory regions are created by the corresponding memory
library calls, each library call can be correlated with a certain portion of the
request. We mapped the two memory library calls (e.g., one malloc in Apache
and one calloc in Lighttpd) whose memory regions store the same part of the
request (e.g. the uri). We then preserve the argument relations that belong to
the mapped library calls, and remove other unmapped relations from R. The
implementation detail is given in Section 3, the effect of such refinement will be
further evaluated in Section 4.

2.5 Detection

After the relation set R is trained, the detection phase is quite straightforward.
During detection, for each argument pair (arg1,p, arg2,q) appears in R, each in-
stance of (arg1,p = vx, arg2,q = vy) will be tested. If an instance does not satisfy
the corresponding 〈arg1,p R arg2,q〉 in R, the IDS will raise an alarm. Although
the complexity of the training is relatively high, the detection only involves sim-
ple and fast computation. The main cost of detection depends on the cost of
monitoring and logging the function calls.

3 Implementation

We have implemented our approach on Ubuntu 8.04 (Linux kernel 2.6.24). The
implementation consists of two online components and an offline component.

The two online components are both monitor modules (referred to as tracer),
one of which is used to trace system calls, the other is used to trace library calls
of the monitored programs. For the system call tracer, we utilize ptrace to
intercept each system call made by the monitored program and log the following
information: (a) the PC value from where the system call was invoked, (b) values
of arguments, and (c) the call stack information which contains a set of absolute
return addresses. For the library call tracer, we modify the GNU C library (glibc)
under Ubuntu to output similar information for a selected set of library calls.
Since the backtrace method cannot be used within the implementation of some
library calls such as malloc, we implement our own backtrace method in the
glibc to log the call stack information.

Each time when the monitored program starts, all the base addresses of its
loaded shared libraries are also recorded, which is retrieved from corresponding

10 Jin Han et al.

/proc/[pid]/maps. These addresses will be used to convert the absolute ad-
dresses in the call stack recorded by the tracer to relative addresses, in the form
of [libname+offset]. By having relative call stacks, we are able to identify the
same instance of function call across different runs of the same program.

The offline component of our implementation includes the parsers of the
logged traces and the training module that implements the algorithms in Sec-
tion 2. As mentioned earlier, a configuration file is also provided to the training
module, which specifies the function calls that are comparable. The implemen-
tation of the offline component is about 3.5K LOC.

For the model refinement part in the training, we utilize TEMU [1] to carry
out the taint analysis. Web server programs running in TEMU are provided
with tainted request stream and tainted local disk files, and the instructions of
the monitored web server will be recorded when processing each request. The
recorded instruction traces are then translated by the trace_reader tool in
Vine [1] and used as inputs to the trace parsers we implemented. According to
the taint information in the trace files, our trace parser will be able to extract
the information that each memory library calls is related to which part of the
request stream (or is related to which file on the disk). Then two library calls
(in two diverse servers) which are related to the same part of the request (or
the same local file) are recorded as the mapped library calls as mentioned in the
previous section. This TEMU trace parser is around 1K LOC.

4 Evaluation

In this section, we first investigate the effectiveness of our approach in detect-
ing real attacks and then analyze the false alarm rates. Performance overheads
for intrusion detection are also discussed. All experiments are conducted under
Ubuntu 8.04 and the training and testing are performed in offline mode.

4.1 Detection Effectiveness

Since the code injection attacks have been extensively addressed in prior re-
search [7, 8, 9, 13, 14, 19, 23], we focus on evaluating the detection effectiveness
of our model against attacks on security-critical data utilizing erratic arguments.
Table 1 lists the set of attacks tested in our evaluation. The first two attacks
in Table 1 are detectable by our approach since they both violate the string
argument relations trained in our model, while the other two attacks in Table 1
violate the integer argument relations.

Detection of anomalous string arguments.

The first attack in Table 1 exploits a stack overflow vulnerability in Ghttpd’s
logging function [4], which occurs in the following code fragment in function
serverconnection():

Detecting Erratic Arguments 11

Table 1. Selected Non-control-flow Attacks

Reference
Vulnerable

Attack Description
Alternative Detected?

Program Program (type)

S.Chen et al. [4] Ghttpd
stack overflow to

Null-httpd
Yes

overwrite filename data (string)

S.Chen et al. [4] Null-httpd
heap overflow to corrupt

Ghttpd
Yes

cgi-bin configuration string (string)

S.Chen et al. [4] Wu-ftpd
format string attack to

Pure-ftpd
Yes

overwrite userid data (integer)

CVE-2008-4298 Lighttpd
memory leak via

Cherokee httpd
Yes

duplicate request headers (integer)

1: if (strstr(ptr, "/.."))

2: reject the request;

3: log(...);

4: if (strstr(ptr, "cgi-bin"))

5: execve(ptr, ...)

In the above code, ptr is a char pointer to the string of URL requested
by a remote client. The first two lines in the code are used to check the ab-
sence of “/..” in the URL, before the CGI request is parsed and handled in
line 4–5. The stack buffer overflow vulnerability is in function log(), where
a long user input string can overrun a 200-byte stack buffer. Chen et al. [4]
managed to construct a stealthy attack which changes ptr to point to a string
cgi-bin/../../../../bin/sh by exploiting the vulnerability in log(). Their
attack neither injects code nor alters the return address, thus, it is difficult to
be detected by most of existing models.

Our approach is able to detect this attack. During training, our model learns
the equal relation between the first parameter of execve in Ghttpd and the pa-
rameter of corresponding execve in Null-httpd (in function cgi_main()). Since
this relation is later violated when this attack has successfully changed the value
of ptr in Ghttpd, an alarm is raised by the IDS.

Although this attack is also detectable by the dataflow model [2], their mech-
anism is different. Their system first learns that all files executed at line 5 should
be within the "cgi-bin" directory. The attack is detected when it accesses a
file outside this directory. However, such isWithinDir [2] relation (trained by
monitoring the program itself) may not be sufficient in practical scenarios. For
example, in typical business applications, files under the same directory may
have different access policies. A user x is only allowed to execute program A
under the directory, but not program B. Due to the overflow attack, adversary
with the privilege of user x is able to gain the access to program B. Under such a
scenario, the isWithinDir relation will not be able to detect such attacks since
all the programs are under the same directory, while our model is still able to

12 Jin Han et al.

detect attacks in cases like these.

The second attack in Table 1 targets on a heap overflow vulnerability exists
in Null-httpd. This vulnerability is triggered when a special POST command
is received by the server. This vulnerability can be used to corrupt the CGI-
BIN configuration of Null-httpd and will result in root compromise without
executing any external code. In the attack illustrated by Chen et al. [4], two
POST commands are issued to precisely overwrite four characters in the CGI-
BIN configuration so that it is changed from "/usr/local/httpd /cgi-bin\0"
to "/bin\0". After the corruption, /bin/sh can be started as a CGI program
and any shell command can be sent as the standard input to /bin/sh.

This attack cannot be easily detected by control-flow schemes [7, 8, 9, 13, 14,
19, 23], and is not addressed by the dataflow scheme [2]. However, our diversity
model is able to detect such an intrusion due to the same reason in the first
attack – the equal relation (of the first parameter of the two execve calls in
Null-httpd and in Ghttpd) learnt during training, is violated when Null-httpd
is exploited.

Note that although both of these two servers (Ghttpd and Null-httpd) have
vulnerabilities, we can still use them together to build our diversity detection
model because their vulnerabilities are not exploitable by the same attack code.
In general, the probability that the same vulnerability exists in two diverse
applications providing semantically-close functionalities is very low [15].

Detection of anomalous integer arguments.

The third attack in Table 1 exploits a format string vulnerability in Wu-ftpd.
The vulnerable code fragment is within the getdatasock() function:

1: seteuid(0);

2: setsockopt(...);

...

3: seteuid(pw->pw_uid);

The above function is invoked when a user issues data transfer commands,
such as downloading or uploading a file. It requires root privilege in order to
perform the setsockopt() operation. Thus, the privilege is temporarily esca-
lated using seteuid(0) and then changed back by the second seteuid(). The
data structure pw->pw_uid is a cached copy of the user ID saved on the heap.
The attack proposed in [4] exploits the format-string vulnerability to change
pw->pw_uid to 0, which maintains the root privilege for the attacker so that
arbitrary files can be uploaded and downloaded by the attacker as a root user.

Our model detects this attack when monitoring Wu-ftpd together with Pure-
ftpd. Since the two servers have the same configurations, the parameter of
seteuid()1 function call on line 3 in Wu-ftpd always has the same value as the
parameter of the seteuid() calls in function doport3() in Pure-ftpd. These
integer parameter relations are violated when the adversary overflow the heap
1 The underlying system call invoked is setresuid32().

Detecting Erratic Arguments 13

to change pw->pw_uid to 0.

The fourth attack in Table 1 exploits a memory leak vulnerability exists in
Lighttpd. When a duplicated field appears in a request header (e.g., “User-Agent
:Mozilla/4.0” and “User-Agent:MSIE/8.0” both appear in the header), the
http_request_parse() method in Lighttpd will allocate a memory region to
store the content of the second field (i.e., MSIE/8.0), but will not recycle this
resource afterwards. An adversary can utilize this vulnerability to consume the
memory of the server running Lighttpd by sending many requests with duplicate
fields (with a maximum field length of 2KB).

Such Denial-of-Service attack cannot be directly detected by the existing
approaches which train on a single server, especially when the total memory
consumed is not large enough to cause any exception. The difficulty comes from
the memory management behaviors of these web servers. For the most com-
monly used servers (such as Apache, Lighttpd, etc.), the allocated memory will
be reused in processing the following requests and never be explicitly freed. Thus,
for both normal request and attack request processing, only memory allocation
methods (such as malloc, realloc ...) are observed, no deallocation method
(such as free) will appear in the library call sequences obtained. This makes it
difficult for an IDS to precisely model the memory behaviors, as it requires sim-
ulating the complex internal memory management of these server applications.

Our diversity IDS is able to learn the integer argument relations of the cor-
responding memory allocation calls in the two servers monitored. To be spe-
cific, the IDS learns that 16 pairs of the parameter values to the malloc and
realloc calls of Lighttpd and Cherokee servers are equal or have fixed difference
(which is actually due to the size difference of the internal structures in these two
servers). In the detection phase, the IDS detects the memory leak attack imme-
diately when the attack request causes one of Lighttpd’s malloc parameter to
increase (in buffer_copy_string_len() invoked by http_request_parse()),
which violates the integer relations that have been trained in the model.

4.2 False Alarm Analysis

There are three pairs of programs in Table 1. All of them are used to evaluate
the false alarm rates of our approach, as shown in Table 2. Two pairs of them
are http servers (Lighttpd and Cherokee, Ghttpd and Null-httpd), which are
configured to hold the same content of the web site of our university. In the
training phase, the two web servers in the same pair are provided with the same
series of requests (10K requests) obtained from the real log of our university’s
web server. In the detection phase, another set of requests (50K requests) from
the logs are sent to these servers to evaluate the false alarm rates. Applications
in the third pair are FTP server programs (Wu-ftpd and Pure-ftpd). Since we
do not have the access to the log of large amount of real FTP requests, we
configure these two FTP servers to hold the files downloaded from GNU FTP2,
2 GNU Software FTP server, ftp.gnu.org/gnu.

14 Jin Han et al.

and simulate the requests by randomly issuing commands (such as put, get,
dir, passive, type, etc.) for random files or directories on the servers.

Table 2. False alarm rate

Diverse Programs
Training Trace Detection Trace False alarm rates

of Sys calls (×105) # of Sys calls (×105) (×10−5)

Pair 1
Lighttpd 2.29 10.90

0.826
Cherokee httpd 5.19 24.35

Pair 2
Ghttpd 7.24 39.51

1.948
Null httpd 20.62 98.57

Pair 3
Wu ftpd 10.78 54.15

0.617
Pure ftpd 4.37 12.96

We construct two different experiments to test our false alarm rates (as shown
in Table 2 and Table 3). The first experiment only focuses on monitoring the
system calls and their arguments so that it can be compared with existing ap-
proaches which also utilize system call arguments [2, 17] (e.g., the result of the
dataflow model [2] shows the false positive rate of the tested HTTP server is
64.12 × 10−5, and the rate for SSH server is 0.02 × 10−5). Note that the rates
shown in Table 2 are “raw” false alarm rates, i.e., the fraction of system calls
that caused violations, without combining the same type of violations. For ex-
ample, the false alarm rate for Lighttpd in Table 2 is 0.826×10−5, which means
that one false alarm will be raised for every 100K system calls processed. This
indicates that one out of 10K requests will cause false alarms, as on average 10.9
system calls are invoked to process one request for Lighttpd.

Table 3. Model refinement by taint analysis

Programs
Training Trace Detection Trace False alarm rates (×10−5)

of Lib calls (×105) # of Lib calls (×105) Original After Refine

Lighttpd 2.31 11.06
5.286 1.762

Cherokee 0.46 2.27

The results show that the second pair of applications have much higher false
alarm rate than the other two pairs, as in Table 2. We investigated the reason for
this higher false alarm rate, and found that this is due to the fact that during the
training, there are several coincident contain relations for the string arguments
between Ghttpd and Null-httpd, which are violated in the detection phase for
benign requests. Our current implementation of the training algorithm regards
two string arguments as contain as long as their values satisfy this relation, even
if these pair of arguments only appear once in the training. However, some rules
in the training phase could be added to further decrease the false alarm rate. For
example, any string relations should have at least two instances of value pairs in

Detecting Erratic Arguments 15

the training phase so that one instance of values is used to set up the relation
and other values can be used to validate the relation in the training (and any
argument pairs which only have one instance should be regarded as ∅ relation in
R). Such modification could reduce the false positives of our model but should
be carefully designed so that it would not decrease the detection capability as
well. Investigation on this trade-off is left as future work.

In the second experiment (as shown in Table 3), we investigate the false pos-
itive rate when our model monitors the memory management library calls of
the diverse applications. Note that different from Table 2, only library calls are
considered in Table 3. We further investigate the effectiveness on false positive
reduction by refining our model using taint analysis. The result shows that af-
ter removing the library call argument patterns which are not mapped by the
semantic relations, the false positive rate decreases. It is possible to refine the
relations of other arguments by using taint analysis. However, since the seman-
tics of different set of library/system call arguments vary, taint analysis needs
to be carefully customized accordingly.

4.3 Performance Overheads

Table 4 shows the size of the programs used in our evaluation, along with the
model sizes in terms of the number of relations learnt. Note that the sizes of
the programs in the first pair include some of their own shared libraries. This is
because part of the functionalities of these servers are compiled as shared libraries
in default (e.g., many of the commonly used functions in cherokee are compiled
in libcherokee-base.so and libcherokee-server.so), which is different from
standalone programs. It can be seen from the table that the size of our models
are relatively small compared to the sizes of the programs.

Table 4. Program size and model size

Programs Program Size (Kbytes) String Relations Integer Relations

Pair 1
Lighttpd 767.9

143 367
Cherokee httpd 1165.7

Pair 2
Ghttpd 43.6

120 342
Null httpd 34.3

Pair 3
Wu ftpd 385.3

171 496
Pure ftpd 87.8

We also studied the time cost of our model for both learning and detection
phases, which is illustrated in Table 5. The original size of the training traces
were between 110MB and 526MB, consisting of 0.2 to 2 million system calls.
As shown in Table 5, we measure the performance overheads of monitoring the
system calls and library calls, which is the dominate overhead during detection.
It shows that the overheads of monitoring system calls could be quite high for
web servers (up to 83.4%). The overhead is mainly due to our system call tracer.

16 Jin Han et al.

As explained in Section 3, our monitor module utilizes ptrace for system call
interception with our own implementation of the backtrace which records the
call stack information of each system call. Similar overhead was also reported by
existing approach [2] using ptrace. This cost can be reduced to less than 6% [9],
by a kernel implementation of the interceptor.

Table 5. Training time and detection overhead

Programs Training time
Detection Overheads

Monitoring sys calls Monitoring lib calls

Lighttpd & Cherokee 93.8 sec 29.10% 18.38%

Ghttpd & Null-httpd 1620.9 sec 83.39% 11.41%

Wu-ftpd & Pure-ftpd 2091.3 sec 17.56% 1.37%

5 Related Work

In this section, we summarize the related work from two perspectives: one is
traditional intrusion detection schemes, the other is diversity-based detection
schemes.

Traditional intrusion detection techniques [5, 7, 8, 9, 13, 14, 19, 23, 26] mainly
focus on utilizing only system call sequences to detect code injection attacks.
Recent works [2, 17, 18, 20, 24] further incorporate system call argument infor-
mation to defend against attacks which do not modify control flows. However,
these approaches have difficulties in deciding which legitimate argument value
is really benign, when multiple legitimate values appear in the training phase.

Early works on software diversity construct intrusion tolerance systems [3, 21]
with software providing semantically-close functionalities. This architecture is
then utilized for developing diversity-based intrusion detection techniques [6,
10, 11, 16, 25]. Most of these techniques use Commercial Off-The-Shelf (COTS)
software to build the detection models. Among those schemes, the techniques
proposed by Just et al. [16] and Totel et al. [25] are output voting schemes,
which only compare the final outputs (HTTP status codes and files) of the
diverse software to detect intrusions. However, as many of the intrusions may
not result in observable deviation in the responses of those server software, such
intrusions can evade detections of these techniques.

Behavioral Distance model by Gao et al. [10, 11] was later proposed to defend
against stealthy attacks which are not addressed by both the output voting
schemes and traditional intrusion detection techniques which only monitor single
application. However, since hidden Markov model used in their scheme (to train
the normal-behavior profiles of the system call sequences) is only able to handle
finite states, their model cannot be simply extended to detect attacks utilizing
erratic arguments.

Our approach is the first work that captures underlying semantic correlation
of the argument values in diverse programs. Our model gains more accurate

Detecting Erratic Arguments 17

context information compared to existing schemes. Such context information
is critical in detecting sophisticated attacks on security-critical data utilizing
erratic arguments. When deployed, our model can be combined with the existing
system call sequence or control flow models to defend against a wider range of
attacks.

6 Conclusions

In this paper, we propose an anomaly detection model to detect erratic-argument
attacks which are recognized as normal inputs by the existing techniques. Our ap-
proach utilizes the function arguments of two diverse applications which provide
semantically-close functionalities. Different from existing techniques, our model
learns the relations of the function arguments between the two applications,
which naturally captures more accurate context information. In the evaluation,
we show that our model is able to detect real attack manipulating the value of
erratic arguments, with a moderate false alarm rate. The main limitation of our
scheme is the additional cost on the management of diverse software. However,
such a cost could be negligible for some existing fault-tolerant system where
diverse software have already been deployed to prevent simultaneous failure.

References

1. TEMU and Vine. The BitBlaze Dynamic Analysis Component. http://bitblaze.
cs.berkeley.edu.

2. S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, pages 48–62, 2006.

3. L. Chen and A. Avizienis. N-version programming: A fault-tolerance approach
to reliability of software operation. In Digest of 8th International Symposium on
Fault-Tolerant Computing (FTCS), pages 3–9, June 1978.

4. S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-data attacks
are realistic threats. In Proceedings of the 14th conference on USENIX Security
Symposium, pages 12–12, 2005.

5. L. chung Lam and T. cker Chiueh. Automatic extraction of accurate application-
specific sandboxing policy. In Proceedings of the International Symposium on Re-
cent Advances in Intrusion Detection, pages 1–20, 2004.

6. B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems: a secretless framework for
security through diversity. In Proceedings of the 15th conference on USENIX Se-
curity Symposium, 2006.

7. H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In Proceedings of the 2003 IEEE Symposium on
Security and Privacy, 2003.

8. S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A sense of self for unix
processes. In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
page 120, 1996.

18 Jin Han et al.

9. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graphs for
anomaly detection. In Proceedings of the 11th ACM conference on Computer and
Communications Security, pages 318–329, 2004.

10. D. Gao, M. K. Reiter, and D. Song. Behavioral distance for intrusion detection. In
Proceedings of the 8th International Symposium on Recent Advances in Intrusion
Detection, pages 63–81, 2005.

11. D. Gao, M. K. Reiter, and D. Song. Behavioral distance measurement using hidden
markov models. In Proceedings of the 9th International Symposium on Recent
Advances in Intrusion Detection, pages 19–40, 2006.

12. D. Gao, M. K. Reiter, and D. Song. Beyond output voting: Detecting compromised
replicas using HMM-based behavioral distance. IEEE Transactions on Dependable
and Secure Computing (TDSC), July 2008.

13. A. K. Ghosh and A. Schwartzbard. A study in using neural networks for anomaly
and misuse detection. In Proceedings of the 8th conference on USENIX Security
Symposium, pages 12–12, 1999.

14. J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitive intrusion detection.
In Proceedings of the Network and Distributed System Security Symposium, 2004.

15. J. Han, D. Gao, and R. H. Deng. On the effectiveness of software diversity: A
systematic study on real-world vulnerabilities. In Proceedings of the Detection of
Intrusions and Malware and Vulnerability Assessment, pages 127–146, July 2009.

16. J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich, and J. Rowe.
Learning unknown attacks - A start. In Proceedings of the 5th International Sym-
posium on Recent Advances in Intrusion Detection, 2002.

17. C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection of anomalous
system call arguments. In European Symposium on Research in Computer Security,
2003.

18. F. Maggi, M. Matteucci, and S. Zanero. Detecting intrusions through system call
sequence and argument analysis. IEEE Transactions on Dependable and Secure
Computing (TDSC), 7:381–395, 2010.

19. C. C. Michael and A. Ghosh. Simple, state-based approaches to program-based
anomaly detection. ACM Transactions on Information and System Security (TIS-
SEC), 5(3):203–237, 2002.

20. N. Provos. Improving host security with system call policies. In Proceedings of the
12th conference on USENIX Security Symposium, pages 18–18, 2003.

21. J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The design and imple-
mentation of an intrusion tolerant system. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN), 2002.

22. E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask). In Proceedings of the 2010 IEEE Symposium on Security and
Privacy, pages 317–331, 2010.

23. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, page 144, 2001.

24. G. Tandon and P. Chan. Learning rules from system call arguments and sequences
for anomaly detection. In Workshop on Data Mining for Computer Security, 2003.

25. E. Totel, F. Majorczyk, and L. Me. COTS diversity based intrusion detection and
application to web servers. In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection, 2005.

26. D. Wagner and D. Dean. Intrusion detection via static analysis. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy, page 156, 2001.

